Predicting corpus example quality for lexicographic purposes by supervised machine learning

Nikola Ljubešić ${ }^{1} \quad$ Mario Peronja ${ }^{1}$ Ivo-Pavao Jazbec ${ }^{2}$
${ }^{1}$ http://nlp.ffzg.hr
Department of Information and Communication Sciences University of Zagreb
${ }^{2}$ Institute of Croatian Language and Linguistics

ENEL WG3 workshop
Vienna, 2015-02-12

Introduction

- good corpus examples are a very important part of every lexical resource
- frequently used approach - heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative - use supervised machine learning - learn to discriminate between good and bad corpus examples on manually annotated data
- difference - manual weighting vs. manual annotation
- ranking problem - want the good examples to be ranked high, bad examples low
- the lexicographer examines only the N first candidates
- we just include the first N candidates

Introduction

- good corpus examples are a very important part of every lexical resource
- frequently used approach - heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative - use supervised machine learning - learn to discriminate between good and bad corpus examples on manually annotated data
- difference - manual weighting vs. manual annotation
- ranking problem - want the good examples to be ranked high, bad examples low
- the lexicographer examines only the N first candidates
- we just include the first N candidates

Introduction

- good corpus examples are a very important part of every lexical resource
- frequently used approach - heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative - use supervised machine learning - learn to discriminate between good and bad corpus examples on manually annotated data
- difference - manual weighting vs. manual annotation
- ranking problem - want the good examples to be ranked high, bad examples low
- the lexicographer examines only the N first candidates - we just include the first N candidates

Introduction

- good corpus examples are a very important part of every lexical resource
- frequently used approach - heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative - use supervised machine learning - learn to discriminate between good and bad corpus examples on manually annotated data
- difference - manual weighting vs. manual annotation
- ranking problem - want the good examples to be ranked high, bad examples low
- the lexicographer examines only the N first candidates - we just include the first N candidates

Introduction

- good corpus examples are a very important part of every lexical resource
- frequently used approach - heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative - use supervised machine learning - learn to discriminate between good and bad corpus examples on manually annotated data
- difference - manual weighting vs. manual annotation
- ranking problem - want the good examples to be ranked high, bad examples low
- the lexicographer examines only the N first candidates
- we just include the first N candidates

The dataset

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme
- 1094 example sentences from the hrWaC corpus
- each example annotated by a 4-class schema:
- 1 - very bad 14%
- 2 - bad 41.7%
- 3 - good 33.3%
- 4 - very good 11.1%
- double annotation of 100 sentences, observed agreement 44\%, on two classes 66\%

The dataset

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme
- 1094 example sentences from the hrWaC corpus
- each example annotated by a 4-class schema:
- 1 - very bad 14%
- 2 - bad 41.7%
- 3 - good 33.3\%
- 4 - very good 11.1%
- double annotation of 100 sentences, observed agreement 44\%, on two classes 66\%

The dataset

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme
- 1094 example sentences from the hrWaC corpus
- each example annotated by a 4-class schema:
- 1 - very bad 14%
- 2 - bad 41.7%
- 3 - good 33.3\%
- 4 - very good 11.1%
- double annotation of 100 sentences, observed agreement 44\%, on two classes 66\%

	1	2	3	4
1	9	11	7	2
2	9	25	14	6
3	1	4	9	2
4	0	0	0	1

Experimental setup

- define 23 explanatory variables / features
- string-based
- corpus-based
- linguistic
- inspect the strength of each variable
- univariate analysis - ANOVA on each variable grouped by the 2-class response
- feature elimination - remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value - use regression for prediction (RandomForestRegressor from sklearn)
- outnut as a ranking task - sort examples of each collocate by the response variable
- evaluation - precision on first N results (P@N) for each collocate

Experimental setup

- define 23 explanatory variables / features
- string-based
- corpus-based
- linguistic
- inspect the strength of each variable
- univariate analysis - ANOVA on each variable grouped by the 2-class response
- feature elimination - remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value - use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task - sort examples of each collocate by the response variable
- evaluation - precision on first N results (P@N) for each collocate

Experimental setup

- define 23 explanatory variables / features
- string-based
- corpus-based
- linguistic
- inspect the strength of each variable
- univariate analysis - ANOVA on each variable grouped by the 2-class response
- feature elimination - remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value - use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task - sort examples of each collocate by the response variable
- evaluation - precision on first N results (P@N) for each collocate

Experimental setup

- define 23 explanatory variables / features
- string-based
- corpus-based
- linguistic
- inspect the strength of each variable
- univariate analysis - ANOVA on each variable grouped by the 2-class response
- feature elimination - remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value - use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task - sort examples of each collocate by the response variable
- evaluation - precision on first N results (P@N) for each collocate

Features

(1) sent_len - length of the sentence
(2) avg_len - average token length
(3) gte10_perc - percentage of tokens longer or equal to 10 characters
(9) It3_perc - percentage of tokens shorter than 3 characters
(5) alphanum_perc - percentage of tokens being alphanumeric
(0) alphanumpunc_perc - percentage of tokens being alphanumeric or standard punctuations
(1) startswithucase - whether the sentence starts with an uppercase letter
(8) endswithpunc - whether the sentence ends with a punctuation
(9) diac_perc - percentage of tokens containing diacritics
(10) Icase_perc - percentage of lowercased tokens
(1) ucase_perc - percentage of uppercased tokens
(3) tcase_perc - percentage of titlecased tokens
(3) headpos_perc - relative position of the start of collocation

Features

(44) mf1k_perc - percentage of tokens in the 1 k most frequent corpus tokens
(5) mf10k_perc - percentage of tokens in the 10k most frequent corpus tokens
(0) mf100k_perc - percentage of tokens in the 100k most frequent corpus tokens
(1) pron_perc - percentage of pronoun tokens
(B) pn_perc - percentage of proper noun tokens
(10) num_perc - percentage of numeral tokens
(20) sub_num - number of subordinating conjunctions
(21) co_num - number of coordinating conjunctions
(23) subco_num - number of conjunctions
(3) syntcomplex - syntactic complexity as the average length of the dependency arcs

Feature strength

	univariate	elimination
sent_len	$7.0 \mathrm{e}-18$	-0.0207
avg_len	$5.7 \mathrm{e}-05$	-0.0029
gte10_perc	0.1087	0.0000
It3_perc	$9.9 \mathrm{e}-05$	0.0001
alphanum_perc	$4.1 \mathrm{e}-09$	-0.0086
alphanumpunc_perc	$5.1 \mathrm{e}-05$	-0.0012
startswithucase	$3.5 \mathrm{e}-04$	0.0005
endswithpunc	$2.7 \mathrm{e}-20$	-0.0459
diac_perc	0.0064	-0.0002
Icase_perc	0.0063	0.0015
ucase_perc	0.0045	-0.0039
tcase_perc	0.0760	-0.0040
headpos_perc	0.0007	-0.0082

Feature strength

	univariate	elimination
mf1k_perc	0.0687	0.0034
mf10k_perc	0.0008	0.0009
mf100k_perc	$1.7 \mathrm{e}-05$	-0.0067
pron_perc	0.4039	-0.0016
pn_perc	0.0018	-0.0017
num_perc	0.0037	0.0019
sub_num	$5.7 \mathrm{e}-08$	0.0031
co_num	$7.4 \mathrm{e}-16$	-0.0018
subco_num	$1.3 \mathrm{e}-15$	-0.0021
syntcomplex	$8.2 \mathrm{e}-12$	-0.0045

Feature distribution

co_num

sent_len, co_num, syntcomplex?

Results

- evaluate the regression results as a ranking task
- produce ranked results for each collocate - realistic setting
- calculate precision of first N results ($P @ N$) with $N=3,5,10$
- baseline - random order of sentences
- ceiling - sentences ordered by human annotation
- regressor_all - all 23 features
- regressor_string - only string features (no outer knowledge)
- regressor_string_langind - only language independent string features (without diac_perc)

Results

- evaluate the regression results as a ranking task
- produce ranked results for each collocate - realistic setting
- calculate precision of first N results ($P @ N$) with $N=3,5,10$
- baseline - random order of sentences
- ceiling - sentences ordered by human annotation
- regressor_all - all 23 features
- regressor_string - only string features (no outer knowledge)
- regressor_string_langind - only language independent string features (without diac_perc)

Results

- evaluate the regression results as a ranking task
- produce ranked results for each collocate - realistic setting
- calculate precision of first N results ($P @ N$) with $N=3,5,10$
- baseline - random order of sentences
- ceiling - sentences ordered by human annotation
- regressor_all - all 23 features
- regressor_string - only string features (no outer knowledge)
- regressor_string_langind - only language independent string features (without diac_perc)

	$\mathrm{P@10}$	$\mathrm{P@5}$	$\mathrm{P@} 3$
baseline	0.489	0.495	0.496
ceiling	0.988	1.0	1.0
regressor_all	$\mathbf{0 . 8 1 9}$	$\mathbf{0 . 9 0 0}$	$\mathbf{0 . 9 4 0}$
regressor_string	0.794	0.888	0.922
regressor_string_langind	0.783	0.850	0.880

Distribution of the results

Learning curve

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6\% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra
knowledge necessary), language independent setting 6\% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6\% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Conclusion

- supervised learning approach for predicting corpus example quality - train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94\%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6\% loss
- language independence should be tested on multilingual data
- train and evaluate on L2 data
- evaluate the L1 model on L2 data
- what does pay off more? - manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
- compare each example to a bag-of-words model of all examples
- the prototypical usages should be most similar to the model

Predicting corpus example quality for lexicographic purposes by supervised machine learning

Nikola Ljubešić ${ }^{1}$ Mario Peronja ${ }^{1}$ Ivo-Pavao Jazbec ${ }^{2}$
${ }^{1}$ http://nlp.ffzg.hr
Department of Information and Communication Sciences University of Zagreb
${ }^{2}$ Institute of Croatian Language and Linguistics

ENEL WG3 workshop
Vienna, 2015-02-12

