ntroduction	Dataset	Experiments	Conclusion

Predicting corpus example quality for lexicographic purposes by supervised machine learning

Nikola Ljubešić¹ Mario Peronja¹ Ivo-Pavao Jazbec²

¹http://nlp.ffzg.hr Department of Information and Communication Sciences University of Zagreb

²Institute of Croatian Language and Linguistics

ENEL WG3 workshop Vienna, 2015-02-12

Introduction	Dataset	Experiments	Conclusion
•	O	000000000	00
Introduction			

- good corpus examples are a very important part of every lexical resource
- frequently used approach heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative use supervised machine learning learn to discriminate between good and bad corpus examples on manually annotated data
- difference manual weighting vs. manual annotation
- ranking problem want the good examples to be ranked high, bad examples low
 - the lexicographer examines only the N first candidates
 - we just include the first N candidates

Introduction	Dataset	Experiments	Conclusion
•	O	000000000	00
Introduction			

- good corpus examples are a very important part of every lexical resource
- frequently used approach heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative use supervised machine learning learn to discriminate between good and bad corpus examples on manually annotated data
- difference manual weighting vs. manual annotation
- ranking problem want the good examples to be ranked high, bad examples low
 - the lexicographer examines only the N first candidates
 - we just include the first N candidates

Introduction	Dataset	Experiments	Conclusion
•	O	000000000	00
Introduction			

- good corpus examples are a very important part of every lexical resource
- frequently used approach heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative use supervised machine learning learn to discriminate between good and bad corpus examples on manually annotated data
- difference manual weighting vs. manual annotation
- ranking problem want the good examples to be ranked high, bad examples low

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- the lexicographer examines only the N first candidates
- we just include the first N candidates

Introduction	Dataset	Experiments	Conclusion
•	O	000000000	
Introduction			

- good corpus examples are a very important part of every lexical resource
- frequently used approach heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative use supervised machine learning learn to discriminate between good and bad corpus examples on manually annotated data
- difference manual weighting vs. manual annotation
- ranking problem want the good examples to be ranked high, bad examples low

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- the lexicographer examines only the N first candidates
- we just include the first N candidates

Introduction	Dataset	Experiments	Conclusion
•	O	000000000	00
Introduction			

- good corpus examples are a very important part of every lexical resource
- frequently used approach heuristics, GDEX, predefined variables that are weighted by a human, requires manual tweaking
- alternative use supervised machine learning learn to discriminate between good and bad corpus examples on manually annotated data
- difference manual weighting vs. manual annotation
- ranking problem want the good examples to be ranked high, bad examples low
 - the lexicographer examines only the N first candidates
 - we just include the first N candidates

00 00

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme

• 1094 example sentences from the hrWaC corpus

- each example annotated by a 4-class schema:
 - 1 very bad 14%
 - 2 bad 41.7%
 - 3 good 33.3%
 - 4 very good 11.1%
- double annotation of 100 sentences, observed agreement 44%, on two classes 66%

	1	2	3	4	
1	9	11	7	2	
2	9	25	14	6	
3	1	4	9	2	
4				1	
					-

Introduction	Dataset	Experiments	Conclusion
	•		
<u> </u>			
The dataset			

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme
- 1094 example sentences from the hrWaC corpus
- each example annotated by a 4-class schema:
 - 1 very bad 14%
 - 2 bad 41.7%
 - 3 good 33.3%
 - 4 very good 11.1%
- double annotation of 100 sentences, observed agreement 44%, on two classes 66%

	1	2	3	4							
1	9	11	7	2							
2	9	25	14	6							
3	1	4	9	2							
4				1							
				 	• 6	A 1	 •	< ≣	•	2	200

Introduction	Dataset	Experiments	Conclusion
	•		
T I I			
The dataset			
ine addaee			

- 4 lexemes, one per each PoS
- 16 collocations, 4 per lexeme
- 1094 example sentences from the hrWaC corpus
- each example annotated by a 4-class schema:
 - 1 very bad 14%
 - 2 bad 41.7%
 - 3 good 33.3%
 - 4 very good 11.1%
- double annotation of 100 sentences, observed agreement 44%, on two classes 66%

	1	2	3	4
1	9	11	7	2
2	9	25	14	6
3	1	4	9	2
4	0	0	0	1

Introduction	Dataset	Experiments	Conclusion
		000000000	
Experimental	setup		

- define 23 explanatory variables / features
 - string-based
 - corpus-based
 - linguistic
- inspect the strength of each variable
 - univariate analysis ANOVA on each variable grouped by the 2-class response
 - feature elimination remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task sort examples of each collocate by the response variable
- evaluation precision on first N results (P@N) for each collocate

Introduction	Dataset	Experiments	Conclusion
Experimental setu	ıp		

- define 23 explanatory variables / features
 - string-based
 - corpus-based
 - linguistic
- inspect the strength of each variable
 - univariate analysis ANOVA on each variable grouped by the 2-class response
 - feature elimination remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task sort examples of each collocate by the response variable
- evaluation precision on first N results (P@N) for each collocate

Introduction	Dataset	Experiments	Conclusion
Experimental setu	ıp		

- define 23 explanatory variables / features
 - string-based
 - corpus-based
 - linguistic
- inspect the strength of each variable
 - univariate analysis ANOVA on each variable grouped by the 2-class response
 - feature elimination remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value – use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task sort examples of each collocate by the response variable
- evaluation precision on first N results (P@N) for each collocate

Introduction	Dataset	Experiments	Conclusion
Experimental setu	ıp		

- define 23 explanatory variables / features
 - string-based
 - corpus-based
 - linguistic
- inspect the strength of each variable
 - univariate analysis ANOVA on each variable grouped by the 2-class response
 - feature elimination remove the variable from the set of all variables and measure the loss
- our response variable (quality of the example) is an ordinal value – use regression for prediction (RandomForestRegressor from sklearn)
- output as a ranking task sort examples of each collocate by the response variable
- evaluation precision on first N results (P@N) for each collocate

Introduction	Dataset	Experiments	Conclusion
O	O	○●○○○○○○○	00
Features			

- sent_len length of the sentence
- avg_len average token length
- gte10_perc percentage of tokens longer or equal to 10 characters
- It3_perc percentage of tokens shorter than 3 characters
- alphanum_perc percentage of tokens being alphanumeric
- alphanumpunc_perc percentage of tokens being alphanumeric or standard punctuations
- startswithucase whether the sentence starts with an uppercase letter
- endswithpunc whether the sentence ends with a punctuation
- o diac_perc percentage of tokens containing diacritics
- Icase_perc percentage of lowercased tokens
- ucase_perc percentage of uppercased tokens
- tcase_perc percentage of titlecased tokens
- headpos_perc relative position of the start of collocation

Introduction	Dataset	Experiments	Conclusion
		00000000	
Features			

- mf1k_perc percentage of tokens in the 1k most frequent corpus tokens
- mf10k_perc percentage of tokens in the 10k most frequent corpus tokens
- mf100k_perc percentage of tokens in the 100k most frequent corpus tokens
- pron_perc percentage of pronoun tokens
- pn_perc percentage of proper noun tokens
- num_perc percentage of numeral tokens
- sub_num number of subordinating conjunctions
- a co_num number of coordinating conjunctions
- subco_num number of conjunctions
- Syntcomplex syntactic complexity as the average length of the dependency arcs

Introduction	Dataset	Experiments	Conclusion
0	O		00
Feature strength			

	univariate	elimination
sent_len	7.0e-18	-0.0207
avg_len	5.7e-05	-0.0029
gte10_perc	0.1087	0.0000
lt3_perc	9.9e-05	0.0001
alphanum_perc	4.1e-09	-0.0086
alphanumpunc_perc	5.1e-05	-0.0012
startswithucase	3.5e-04	0.0005
endswithpunc	2.7e-20	-0.0459
diac_perc	0.0064	-0.0002
lcase_perc	0.0063	0.0015
ucase_perc	0.0045	-0.0039
tcase_perc	0.0760	-0.0040
headpos_perc	0.0007	-0.0082

Introduction	Dataset	Experiments	Conclusion
O	O	○○○○●○○○○○	00
Feature strength			

	univariate	elimination
mf1k_perc	0.0687	0.0034
mf10k_perc	0.0008	0.0009
mf100k_perc	1.7e-05	-0.0067
pron_perc	0.4039	-0.0016
pn_perc	0.0018	-0.0017
num_perc	0.0037	0.0019
sub₋num	5.7e-08	0.0031
co_num	7.4e-16	-0.0018
subco_num	1.3e-15	-0.0021
syntcomplex	8.2e-12	-0.0045

Feature distribution	Introduction	Dataset	Experiments	Conclusion
	O	O	○○○○○●○○○○	00
	Feature dist	ribution		

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction	Dataset	Experiments	Conclusion
O	O	○○○○○○●○○○	00
sent_len. co_num.	syntcomplex?		

・ロト ・ 日 ・ ・ ヨ ・ < ∃→ æ

Introduction	Dataset	Experiments	Conclusion
O	O	00000000000	00
Results			

- evaluate the regression results as a ranking task
- produce ranked results for each collocate realistic setting
- calculate precision of first N results (P@N) with N = 3, 5, 10
- baseline random order of sentences
- ceiling sentences ordered by human annotation
- regressor_all all 23 features
- regressor_string only string features (no outer knowledge)
- regressor_string_langind only language independent string features (without diac_perc)

	P@10	P@5	P@3	
baseline	0.489	0.495	0.496	
ceiling		1.0	1.0	
regressor_all	0.819	0.900	0.940	
regressor_string	0.794		0.922	
regressor_string_langind	0.783			
				 500

Introduction	Dataset	Experiments	Conclusion
O	O	○○○○○○●○○	00
Results			

- evaluate the regression results as a ranking task
- produce ranked results for each collocate realistic setting
- calculate precision of first N results (P@N) with N = 3, 5, 10
- baseline random order of sentences
- ceiling sentences ordered by human annotation
- regressor_all all 23 features
- regressor_string only string features (no outer knowledge)
- regressor_string_langind only language independent string features (without diac_perc)

	P@10	P@5	P@3		
baseline	0.489	0.495	0.496		
ceiling		1.0	1.0		
regressor_all	0.819	0.900	0.940		
regressor_string	0.794		0.922		
regressor_string_langind	0.783				
			⊡ ► < ≣ ► <	<	900

Introduction	Dataset	Experiments	Conclusion
O	O	0000000000	00
Results			

- evaluate the regression results as a ranking task
- produce ranked results for each collocate realistic setting
- calculate precision of first N results (P@N) with N = 3, 5, 10
- baseline random order of sentences
- ceiling sentences ordered by human annotation
- regressor_all all 23 features
- regressor_string only string features (no outer knowledge)
- regressor_string_langind only language independent string features (without diac_perc)

	P@10	P@5	P@3		
baseline	0.489	0.495	0.496		
ceiling	0.988	1.0	1.0		
regressor_all	0.819	0.900	0.940		
regressor_string	0.794	0.888	0.922		
regressor_string_langind	0.783	0.850	0.880		
			@ ▶ ∢ ≣ ▶ ∢	B N B	Sa

Introduction Da	itaset	Experiments	Conclusion
		000000000	00

Distribution of the results

0.4

0.2

0.0

very bad

P@5

good

very good

bad

P@3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Dataset	Experiments	Conclusion
O	O	000000000	00
Learning curve			

percentage of training data

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Introduction	Dataset	Experiments	Conclusion
O	O	000000000	●0
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - $\bullet\,$ evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples

Introduction	Dataset	Experiments	Conclusion
O	O	000000000	●0
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - $\bullet\,$ evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples

Introduction	Dataset	Experiments	Conclusion
O	O	000000000	●0
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - $\bullet\,$ evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples

Introduction	Dataset	Experiments	Conclusion
0	O	000000000	●○
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples

Introduction	Dataset	Experiments	Conclusion
O	O	000000000	●0
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - $\bullet\,$ evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples

Introduction	Dataset	Experiments	Conclusion
0	O	000000000	●○
Conclusion			

- supervised learning approach for predicting corpus example quality – train a regression model, use it for ranking
- 23 variables from three different categories
- best prediction (94%) when using all variables
- loss of 2% when using only string variables (no extra knowledge necessary), language independent setting 6% loss
- language independence should be tested on multilingual data
 - train and evaluate on L2 data
 - evaluate the L1 model on L2 data
- what does pay off more? manual weighting vs. manual annotation
- additional features? such as "example prototypicality"?
 - compare each example to a bag-of-words model of all examples
 - the prototypical usages should be most similar to the model

ntroduction	Dataset	Experiments	Conclusion
			00

Predicting corpus example quality for lexicographic purposes by supervised machine learning

Nikola Ljubešić¹ Mario Peronja¹ Ivo-Pavao Jazbec²

¹http://nlp.ffzg.hr Department of Information and Communication Sciences University of Zagreb

²Institute of Croatian Language and Linguistics

ENEL WG3 workshop Vienna, 2015-02-12