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Introduction Dataset Experiments Conclusion

Introduction

good corpus examples are a very important part of every
lexical resource

frequently used approach – heuristics, GDEX, predefined
variables that are weighted by a human, requires manual
tweaking

alternative – use supervised machine learning – learn to
discriminate between good and bad corpus examples on
manually annotated data

difference – manual weighting vs. manual annotation

ranking problem – want the good examples to be ranked high,
bad examples low

the lexicographer examines only the N first candidates
we just include the first N candidates
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Introduction Dataset Experiments Conclusion

The dataset

4 lexemes, one per each PoS

16 collocations, 4 per lexeme

1094 example sentences from the hrWaC corpus

each example annotated by a 4-class schema:

1 – very bad 14%
2 – bad 41.7%
3 – good 33.3%
4 – very good 11.1%

double annotation of 100 sentences, observed agreement 44%,
on two classes 66%

1 2 3 4

1 9 11 7 2
2 9 25 14 6
3 1 4 9 2
4 0 0 0 1
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Experimental setup

define 23 explanatory variables / features
string-based
corpus-based
linguistic

inspect the strength of each variable
univariate analysis – ANOVA on each variable grouped by the
2-class response
feature elimination – remove the variable from the set of all
variables and measure the loss

our response variable (quality of the example) is an ordinal
value – use regression for prediction (RandomForestRegressor
from sklearn)

output as a ranking task – sort examples of each collocate by
the response variable

evaluation – precision on first N results (P@N) for each
collocate
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Features

1 sent len – length of the sentence
2 avg len – average token length
3 gte10 perc – percentage of tokens longer or equal to 10

characters
4 lt3 perc – percentage of tokens shorter than 3 characters
5 alphanum perc – percentage of tokens being alphanumeric
6 alphanumpunc perc – percentage of tokens being

alphanumeric or standard punctuations
7 startswithucase – whether the sentence starts with an

uppercase letter
8 endswithpunc – whether the sentence ends with a punctuation
9 diac perc – percentage of tokens containing diacritics
10 lcase perc – percentage of lowercased tokens
11 ucase perc – percentage of uppercased tokens
12 tcase perc – percentage of titlecased tokens
13 headpos perc – relative position of the start of collocation
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Features

14 mf1k perc – percentage of tokens in the 1k most frequent
corpus tokens

15 mf10k perc – percentage of tokens in the 10k most frequent
corpus tokens

16 mf100k perc – percentage of tokens in the 100k most
frequent corpus tokens

17 pron perc – percentage of pronoun tokens
18 pn perc – percentage of proper noun tokens
19 num perc – percentage of numeral tokens
20 sub num – number of subordinating conjunctions
21 co num – number of coordinating conjunctions
22 subco num – number of conjunctions
23 syntcomplex – syntactic complexity as the average length of

the dependency arcs
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Feature strength

univariate elimination

sent len 7.0e-18 -0.0207

avg len 5.7e-05 -0.0029

gte10 perc 0.1087 0.0000

lt3 perc 9.9e-05 0.0001

alphanum perc 4.1e-09 -0.0086

alphanumpunc perc 5.1e-05 -0.0012

startswithucase 3.5e-04 0.0005

endswithpunc 2.7e-20 -0.0459

diac perc 0.0064 -0.0002

lcase perc 0.0063 0.0015

ucase perc 0.0045 -0.0039

tcase perc 0.0760 -0.0040

headpos perc 0.0007 -0.0082
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Feature strength

univariate elimination

mf1k perc 0.0687 0.0034

mf10k perc 0.0008 0.0009

mf100k perc 1.7e-05 -0.0067

pron perc 0.4039 -0.0016

pn perc 0.0018 -0.0017

num perc 0.0037 0.0019

sub num 5.7e-08 0.0031

co num 7.4e-16 -0.0018

subco num 1.3e-15 -0.0021

syntcomplex 8.2e-12 -0.0045
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Feature distribution
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sent len, co num, syntcomplex?

sent_len
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Introduction Dataset Experiments Conclusion

Results

evaluate the regression results as a ranking task

produce ranked results for each collocate – realistic setting

calculate precision of first N results (P@N) with N = 3, 5, 10

baseline – random order of sentences

ceiling – sentences ordered by human annotation

regressor all – all 23 features

regressor string – only string features (no outer knowledge)

regressor string langind – only language independent string
features (without diac perc)

P@10 P@5 P@3

baseline 0.489 0.495 0.496
ceiling 0.988 1.0 1.0
regressor all 0.819 0.900 0.940
regressor string 0.794 0.888 0.922
regressor string langind 0.783 0.850 0.880
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Distribution of the results
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Learning curve
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Introduction Dataset Experiments Conclusion

Conclusion

supervised learning approach for predicting corpus example
quality – train a regression model, use it for ranking

23 variables from three different categories

best prediction (94%) when using all variables

loss of 2% when using only string variables (no extra
knowledge necessary), language independent setting 6% loss

language independence should be tested on multilingual data

train and evaluate on L2 data
evaluate the L1 model on L2 data

what does pay off more? – manual weighting vs. manual
annotation

additional features? such as ”example prototypicality”?

compare each example to a bag-of-words model of all examples
the prototypical usages should be most similar to the model
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Predicting corpus example quality for lexicographic
purposes by supervised machine learning
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