

Sentence selection in the context of Swedish as a second language: potential for GDEX

EUROPEAN NETWORK OF e-LEXICOGRAPHY Elena Volodina & Ildikó Pilán COST ENeL WG workshop Vienna, 12 February 2015

Overview

- Introduce the initial article
- Pass on to the tests combining machine learning and heuristics
- Present the present-day state in research for Swedish

Semi-automatic selection of best corpus examples for Swedish

- by Elena Volodina, Richard Johansson, Sofie Johansson Kokkinakis
- published at a workshop NLP4CALL, in 2012

Background

- Selection of examples for L2 training and Lexicography:
 - Invent subjective and time-consuming
 - Select manually hundreds of corpus hits, time-consuming
 - (Semi-)automatic pre-selection a possible alternative
- Principle: rank examples according to their appropriateness or "goodness"; the best ones come to the top
- Definition of "goodness" in linguistic parameters:
 - Optimal sentence length
 - Optimal word length
 - Presence of subject and finite verb
 - etc.
- Previous tests with automatic ranking: for English (Kilgariff et.al. 2008), for Slovene (Kosem et.al. 2011), for German (Segler 2007, Didakowski et.al. 2012)

Ranking algorithms for Swedish

- Algorithm #1 (manually defined rules)
 - Each example scored independently using set of heuristic rules with associated weights
 - Sentence length, word frequency, keyword position, presence of a finite verb
 - Only "soft" parameters, i.e. points withdrawn, examples are considered anyway through their ranking placement
- Algorithm #2 (computationally calculated)
 - Principle: examples should be both typical and different (collocationally, distributionally)
 - Difference is formalized as a similarity metric based on Euclidean distance between feature vectors (words and syntactic relations)

Evaluation set-up 1

- Critical questions:
 - Can the two algorithms satisfactorily rank corpus examples?
 - Which of the two performs better?
 - What parameters/predictors to consider in future development?
- Evaluators' background:
 - L2 teachers/computational linguists
 - Lexicographers/computational linguists
 - Lexicographer
 - All have doctoral degrees
 - 50-50 native versus non-native speakers
 - 50-50 men versus women

Evaluation set-up 2

• Test items:

- 50 test items from a graded resource (Kelly list); 10 items per proficiency level
- Only lexical items: nouns, verbs, adjectives, adverbs
- Nr of items per word class reflects word class distribution per proficiency level

• Database:

- Three top hits per algorithm stored in a database (i.e. 6 per test item)
- Examples selected from a combination of corpora (44,3 mln. tokens)
- Same examples for each evaluator
- Information about algorithm not revealed to evaluators to avoid bias

User interface

S	Select your professional group and enter a user name Evaluation tips																											
	Any other non-Swedish speaker User name user2 Start Resume																											
ſ	Your submission status																											
I	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15	16 1	7 18	19	20	212	2 23	24	25	26	27	28	29	30	
I	31	32	33	34	35	36	37 3	8 39	40	41	42	43	44	45	46 4	7 48	49	50	51 5	2 53	54	55	56	57	58	59	60	

Evaluate corpus hits 🌣	•
Mark examples with symbols obligatory). Click on the <i>Submit</i> button to save your result and get a	e or doubtful . Write your comment in the text field (not a new item.
7. resa, substantiv; cefr=A1	
Nr Corpus hits	Your raing Your comment Ifany
1 Flera resor har stoppats av lagexperter .	Acceptable
2 Under resans gång har åtalet justerats .	
3 Resorna har riksdagen betalt .	word order is not optimal for L2 learners

Evaluation results. Quantitative data

	acc	unacc	doubtful	total
alg# 1	56,6%	19,7%	23,7%	100%
alg #2	50,3%	27%	22,7%	100%
Total (#1+#2)	53,5%	23,3%	23,1%	100%

- Alg#1 "won" by 6,3% over #2, generally
 - "well-formedness" (#1) dominates when examples are not presented as a group to demonstrate dispersion (#2)

Evaluation results. Quantitative data

	user group	S	acc	unacc	doubtful	total
	Lexicograp total	ohers, 🤇	63,6%	20%	16,4%	100%
#1 \	ran by E06	alg #1	66,1%	18,6%	15,3%	100%
#1 V	von by 5%	alg #2	61,1%	21,4%	17,5%	100%
	L2 teacher	rs, total <mark>(</mark>	46,7%	25,5%	27,7%	100%
		alg #1	50,2%	20,4%	29,3%	100%
#1 v	on by 7%	alg #2	43,2%	30,6%	26,1%	100%

• Lexicographers more positive than L2 teachers: 63,6% vs 46,7%

Evaluation. Qualitative data.

- **Structural features to avoid:** ellipsis, passive, anaphora, pronouns, long (deep) phrase structure, non-context free sentences, unusual word order, a-typical word class patterns
- Lexical features to avoid: non-frequent vocabulary, proper names, acronyms, abbreviations, compounds, keyword repetition
- Criticism against annotation errors
- Heterogeneous: metaphoric use, abstract use, strange examples, etc.

Conclusions

- Add parameters (features) (for rule-based heuristics)
- Add word sense discrimination
- Set-up a customizable user interface & allow users to assign weights to features for experiments
- Generate **larger output sets** (not three top examples)
- Zoom into user group needs, and add machine learning
- Suggest **best parameter configuration** per user group

Conclusions

- Sentence readability needs to be studied
- Need for a collection of good examples for examination in contrast with "not-so-good" ones

Actions

- Sentence readability does not exist as a field let's start it!
- A corpus of coursebook texts labeled by proficiency level collected (COCTAILL)
- Lärka module for experiments with weights added --- and more!

Thank you!